Tip
All input files can be downloaded: Files.
nosi
This option defines the implementation details of nonothorgonal state interaction (NOSI) calculations for excited and diabaitc states.
- offdiag_correlation
Value
overlap_weightedWill use overlap weighted methodenergy_weightedWill use energy weighted methodcorrelation_potentialWill use correlation functional method, given by thexc_functionaloptionDefault
overlap_weightedDefine the off-diagonal correlation method.
- xc_functional
Value
A valid exchange-correlation functional name
Default
None
When
offdiag_correlationis set tocorrelation_potential, this option is required to specify the exchange-correlation functional to be used. All valid functional names are available in scf.
- zero_threshold
Value
A real number
Default
1.E-6When the overlap of two orbitals is smaller than this value, they will be treated as zero
Warning
Do not set a too large value (like
1.E-4). It may leads to wrong results.
- files
Value
One or more file names
Default
None
List the mwfn file names of the determinants to be read.
- spin_filp
Value
One or more file names
Default
None
List of determinants to perform spin flip (alpha to beta and beta to alpha).
Warning
Only supported when the numbers of alpha electrons and beta electrons number equal.
For example, in the following input:
1nosi 2 files det1.mwfn det2.mwfn det3.mwfn 3 spin_filp det2.mwfn det3.mwfn 4end
In this case, 5 determinants will be used for NOSI calculations:
det1.mwfn
det2.mwfn
det3.mwfn
det2.mwfn (spin flipped)
det3.mwfn (spin flipped)
Theoretical Background
XXXXXX
Input Examples
Example: Excited States of (E)-Dimethyldiazene (Manually)
In this example, we will calculate the ground state and 2 singlet excited states of (E)-Dimethyldiazene with TSO-DFT methods. Then, we will calculate the NOSI for these 3 states. We will use B3LYP/cc-pVTZ level of theory.
Tip
Acutally, in Qbics, the calculation of excited states using TSO+NOSI can be automatically done by a keyword msdft, see msdft for details.
In the following examples, we will calculate the ground and excited states of (E)-Dimethyldiazene using TSO-DFT methods, details of which can be found in TSO-DFT (1): Excited States and scfguess.
dma-s0.inp: Ground state;
dma-s1.inp: S1 state, corresponding to HOMO (16) → LUMO (17) transition;
dma-s2.inp: S2 state, corresponding to HOMO-1 (15) → LUMO (17) transition.
1basis
2 cc-pvtz
3end
4
5scf
6 charge 0
7 spin2p1 1
8 type U # For TSO-DFT, unrestricted SCF is preferred.
9end
10
11mol
12 N -0.11855722 0.06367877 -0.00010027
13 N 1.11855814 -0.06366086 -0.00010026
14 C 1.81864333 1.22402113 0.00009549
15 H 1.12816980 2.07452976 0.00011126
16 H 2.46787129 1.25512096 0.88302715
17 H 2.46820089 1.25538193 -0.88260363
18 C -0.81864582 -1.22402070 0.00009559
19 H -0.12816015 -2.07453667 0.00011125
20 H -1.46787530 -1.25512668 0.88303320
21 H -1.46820496 -1.25538766 -0.88260977
22end
23
24task
25 energy b3lyp
26end
1basis
2 cc-pvtz
3end
4
5scf
6 charge 0
7 spin2p1 1
8 type U
9 no_scf TSO
10end
11
12# 16->17
13scfguess
14 type mwfn
15 file dma-s0.mwfn
16 orb 32 1 1-15 17-204 : 1-203
17 orb 0 1 16 : 204
18end
19
20mol
21 N -0.11855722 0.06367877 -0.00010027
22 N 1.11855814 -0.06366086 -0.00010026
23 C 1.81864333 1.22402113 0.00009549
24 H 1.12816980 2.07452976 0.00011126
25 H 2.46787129 1.25512096 0.88302715
26 H 2.46820089 1.25538193 -0.88260363
27 C -0.81864582 -1.22402070 0.00009559
28 H -0.12816015 -2.07453667 0.00011125
29 H -1.46787530 -1.25512668 0.88303320
30 H -1.46820496 -1.25538766 -0.88260977
31end
32
33task
34 energy b3lyp
35end
1basis
2 cc-pvtz
3end
4
5scf
6 charge 0
7 spin2p1 1
8 type U
9 no_scf TSO
10end
11
12# 15->17
13scfguess
14 type mwfn
15 file dma-s0.mwfn
16 orb 32 1 1-14 16-204 : 1-203
17 orb 0 1 15 : 204
18end
19
20mol
21 N -0.11855722 0.06367877 -0.00010027
22 N 1.11855814 -0.06366086 -0.00010026
23 C 1.81864333 1.22402113 0.00009549
24 H 1.12816980 2.07452976 0.00011126
25 H 2.46787129 1.25512096 0.88302715
26 H 2.46820089 1.25538193 -0.88260363
27 C -0.81864582 -1.22402070 0.00009559
28 H -0.12816015 -2.07453667 0.00011125
29 H -1.46787530 -1.25512668 0.88303320
30 H -1.46820496 -1.25538766 -0.88260977
31end
32
33task
34 energy b3lyp
35end
After calculation, we can collect the results:
State
Energy (Hartree)
Excited Energy (eV)
S0
-189.34737058
0
S1
-189.24112513
2.89
S2
-189.11479416
6.33
Since TSO-DFT is a single-determinant method, S1 and S2 are NOT spin eigenfunctions. To be more accurate, we will use NOSI to get more accurate resutls, using the following 3 input files. They only differ in the offdiag_correlation option.
1basis
2 cc-pvtz
3end
4
5mol
6 N -0.11855722 0.06367877 -0.00010027
7 N 1.11855814 -0.06366086 -0.00010026
8 C 1.81864333 1.22402113 0.00009549
9 H 1.12816980 2.07452976 0.00011126
10 H 2.46787129 1.25512096 0.88302715
11 H 2.46820089 1.25538193 -0.88260363
12 C -0.81864582 -1.22402070 0.00009559
13 H -0.12816015 -2.07453667 0.00011125
14 H -1.46787530 -1.25512668 0.88303320
15 H -1.46820496 -1.25538766 -0.88260977
16end
17
18nosi
19 offdiag_correlation overlap_weighted
20 files dma-s0.mwfn dma-s1.mwfn dma-s2.mwfn
21 spin_flip dma-s1.mwfn dma-s2.mwfn
22end
23
24task
25 energy nosi
26end
1basis
2 cc-pvtz
3end
4
5mol
6 N -0.11855722 0.06367877 -0.00010027
7 N 1.11855814 -0.06366086 -0.00010026
8 C 1.81864333 1.22402113 0.00009549
9 H 1.12816980 2.07452976 0.00011126
10 H 2.46787129 1.25512096 0.88302715
11 H 2.46820089 1.25538193 -0.88260363
12 C -0.81864582 -1.22402070 0.00009559
13 H -0.12816015 -2.07453667 0.00011125
14 H -1.46787530 -1.25512668 0.88303320
15 H -1.46820496 -1.25538766 -0.88260977
16end
17
18nosi
19 offdiag_correlation energy_weighted
20 files dma-s0.mwfn dma-s1.mwfn dma-s2.mwfn
21 spin_flip dma-s1.mwfn dma-s2.mwfn
22end
23
24task
25 energy nosi
26end
1basis
2 cc-pvtz
3end
4
5mol
6 N -0.11855722 0.06367877 -0.00010027
7 N 1.11855814 -0.06366086 -0.00010026
8 C 1.81864333 1.22402113 0.00009549
9 H 1.12816980 2.07452976 0.00011126
10 H 2.46787129 1.25512096 0.88302715
11 H 2.46820089 1.25538193 -0.88260363
12 C -0.81864582 -1.22402070 0.00009559
13 H -0.12816015 -2.07453667 0.00011125
14 H -1.46787530 -1.25512668 0.88303320
15 H -1.46820496 -1.25538766 -0.88260977
16end
17
18nosi
19 offdiag_correlation correlation_potential
20 xc_functional b3lyp
21 files dma-s0.mwfn dma-s1.mwfn dma-s2.mwfn
22 spin_flip dma-s1.mwfn dma-s2.mwfn
23end
24
25task
26 energy nosi
27end
You should pay attention to the following points:
The basis sets and molecular structure should be the same as the ones used for TSO-DFT calculations. (You can copy the input files from the TSO-DFT calculations.)
If
offdiag_correlationis set tocorrelation_potential, thexc_functionaloption should be set as the same as the ones used for TSO-DFT calculations.
In files option, you should list the mwfn file names of the determinants to be read. In spin_flip option, you should list the mwfn file names of the determinants that will be used for spin flip. For example, in the above input, dma-s1.mwfn and dma-s2.mwfn will be used for spin flip. In this case, the NOSI calculation will be performed for the following 5 determinants:
dma-s0.mwfn
dma-s1.mwfn
dma-s1.mwfn (spin flipped)
dma-s2.mwfn
dma-s2.mwfn (spin flipped)
After calculation, we can collect the results. Let’s see nosi-1a.out first:
1Read non-orthogonal determinants:
20 dma-s0.mwfn
31 dma-s1.mwfn
4Spin flipped: dma-s1.mwfn
52 dma-s2.mwfn
6Spin flipped: dma-s2.mwfn
7...
8---- NOSI Overlap Matrix ----
9=============================
10 0 1 2 3 4
11 0 1.00000000 0.00000000 -0.00001375 0.00000000 0.00004606
12 1 0.00000000 1.00000000 0.00000000 0.00000000 -0.00000000
13 2 -0.00001375 0.00000000 1.00000000 -0.00000000 0.00000000
14 3 0.00000000 0.00000000 -0.00000000 1.00000000 0.00000000
15 4 0.00004606 -0.00000000 0.00000000 0.00000000 1.00000000
16
17---- NO Hamiltonian Matrix Functional ----
18==========================================
19 0 1 2 3 4
20 0 -189.34737100 0.00000058 0.00260277 -0.00000192 -0.00871858
21 1 0.00000058 -189.24112500 0.02084657 0.00000885 0.00001057
22 2 0.00260277 0.02084657 -189.24112500 0.00001057 0.00000885
23 3 -0.00000192 0.00000885 0.00001057 -189.11479400 0.09206962
24 4 -0.00871858 0.00001057 0.00000885 0.09206962 -189.11479400
25
26---- NOSI Coefficients Matrix (column vectors are eigenvectors) ----
27====================================================================
28 0 1 2 3 4
29 0 -1.00000000 0.00000101 -0.00001030 -0.00001197 0.00003201
30 1 0.00000657 -0.70710678 -0.70710678 0.00002152 -0.00006937
31 2 -0.00000575 0.70710678 -0.70710678 -0.00002152 -0.00006937
32 3 -0.00001417 -0.00002152 0.00006937 -0.70710678 -0.70710678
33 4 0.00001496 0.00002152 0.00006937 0.70710678 -0.70710678
34
35---- NOSI Results ----
36======================
37 State NOSI Energies Excited Energy Osc. Str. DX DY DZ
38 (Hartree) (eV) (a.u.) (a.u.) (a.u.)
39 0 -189.34737100 0.00000000 0.00000000 42.82332 0.00029 0.00187
40 1 -189.26197158 2.32371833 0.00000000 0.00003 -0.00001 0.00001
41 2 -189.22027843 3.45818894 0.00000000 -0.00001 -0.00008 0.00000
42 3 -189.20686368 3.82320418 0.00000000 0.00000 0.00000 -0.00000
43 4 -189.02272432 8.83363623 0.93845302 2.85145 0.75310 -0.00001
In Read non-orthogonal determinants:, the determinants are shown:
\(\phi_0\) dma-s0.mwfn
\(\phi_1\) dma-s1.mwfn
\(\phi_2\) dma-s1.mwfn (spin flipped)
\(\phi_3\) dma-s2.mwfn
\(\phi_4\) dma-s2.mwfn (spin flipped)
In NOSI Overlap Matrix, the matrix elements \(\left\langle\phi_i\middle|\phi_j\right\rangle\) are calculated.
In NO Hamiltonian Matrix Functional, the matrix elements \(\left\langle\phi_i\left|\hat{H}\right|\phi_j\right\rangle\) are calculated.
In NOSI Coefficients Matrix, the column vectors are eigenvectors of the NOSI Hamiltonian matrix. For example, in column 1, we have:
When a determinant and its spin flipped counterpart are combined with out-of-phases (-0.70710678 and -0.70710678), this is a triplet state. When a determinant and its spin flipped counterpart are combined with in-phases (0.70710678 and 0.70710678), this is a singlet state.
The excited energies are shown in NOSI Results.
Now, we can collect resutls from nosi-1a.out, nosi-1b.out and nosi-1c.out together to get the final results:
State |
TSO |
Overlap Weighted |
Energy Weighted |
Correlation Potential |
Excited Energy (eV) |
NOSI Excited Energy (eV) |
NOSI Excited Energy (eV) |
NOSI Excited Energy (eV) |
|
S0 |
0 |
0 |
0 |
0 |
T1 |
N/A |
2.32 |
2.32 |
2.35 |
S1 |
2.89 |
3.46 |
3.46 |
3.43 |
T2 |
N/A |
3.82 |
3.80 |
5.25 |
S2 |
6.33 |
8.83 |
8.85 |
7.40 |
We can see that, the NOSI results are generally improved upon TSO results. The results from overlap- and energy-weighted methods are very close to each other, while the results from correlation potential method are slightly different for high-lying states.
For every calculation, a CI coefficient file and a spectrum file are generated. For example, nosi-1a-ci.txt and nosi-1a-spectrum.txt.
Example: Diabatic States of a Transition State
In opt, we have calculated the transition state of a SN2 reaction.
In the following examples, we will calculate the diabatic states of Cl-CH3-Cl using TSO-DFT methods, details of which can be found in TSO-DFT (2): Diabatic States and scfguess.
diab-1.inp: Diabatic state of Cl···CH3-Cl (reactant complex);diab-2.inp: Diabatic state of Cl-CH3···Cl (product complex);
1basis
2 def2-svp
3end
4
5scf
6 charge -1
7 spin2p1 1
8 type U
9 no_scf tso
10end
11
12scfguess
13 type fragden
14 frag 0 1 1-5
15 frag -1 1 6
16end
17
18mol
19 C -2.28626983 4.81332375 -0.81110844
20 H -1.77793692 3.91128195 -1.11951067
21 H -1.75817077 5.56455137 -0.24234234
22 H -3.32378354 4.96301934 -1.07305839
23 Cl -1.62247473 5.87896571 -2.80504772
24 Cl -2.93223857 3.76141614 1.19669198
25end
26
27task
28 energy b3lyp
29end
1basis
2 def2-svp
3end
4
5scf
6 charge -1
7 spin2p1 1
8 type U
9 no_scf tso
10end
11
12scfguess
13 type fragden
14 frag 0 1 1-4 6
15 frag -1 1 5
16end
17
18mol
19 C -2.28626983 4.81332375 -0.81110844
20 H -1.77793692 3.91128195 -1.11951067
21 H -1.75817077 5.56455137 -0.24234234
22 H -3.32378354 4.96301934 -1.07305839
23 Cl -1.62247473 5.87896571 -2.80504772
24 Cl -2.93223857 3.76141614 1.19669198
25end
26
27task
28 energy b3lyp
29end
After calculation, we will obtain the reactant and product diabatic states: diab-1.mwfn and diab-2.mwfn. Now, using NOSI, we can combine them to obtain 2 adiabatic states:
1basis
2 def2-svp
3end
4
5mol
6 C -2.28626983 4.81332375 -0.81110844
7 H -1.77793692 3.91128195 -1.11951067
8 H -1.75817077 5.56455137 -0.24234234
9 H -3.32378354 4.96301934 -1.07305839
10 Cl -1.62247473 5.87896571 -2.80504772
11 Cl -2.93223857 3.76141614 1.19669198
12end
13
14nosi
15 files diab-1.mwfn diab-2.mwfn
16end
17
18task
19 energy nosi
20end
In this case, we do not need assign spin_flip option since the reactant and product diabatic states are closed shell. In nosi...end, there is no offdiag_correlation option. This means that the off-diagonal correlation will be calculated using the (default) overlap weighted method.
After calculation, we will obtain the adiabatic states: nosi-2.out:
1---- NOSI Overlap Matrix ----
2=============================
3 0 1
4 0 1.00000000 0.76098229
5 1 0.76098229 1.00000000
6
7---- NO Hamiltonian Matrix Functional ----
8==========================================
9 0 1
10 0 -959.99564600 -730.60245583
11 1 -730.60245583 -959.99557700
12
13---- NOSI Coefficients Matrix (column vectors are eigenvectors) ----
14====================================================================
15 0 1
16 0 -0.53311086 1.44624356
17 1 -0.53259535 -1.44643349
18
19---- Singlet and Triplet Excitation Energies ----
20=================================================
21Eigenstate 0: -960.03127186 Hartree; Excitation energy: 0.00000000 eV
22Eigenstate 1: -959.73288097 Hartree; Excitation energy: 8.11963379 eV
23
24---- Singlet State Weights ----
25===============================
26 0 1
27 0 0.50027469 0.49972531
28 1 0.49972531 0.50027469
29
30---- NOSI Results ----
31======================
32 State NOSI Energies Excited Energy Osc. Str. DX DY DZ
33 (Hartree) (eV) (a.u.) (a.u.) (a.u.)
34 0 -960.03127186 0.00000000 0.00000000 -268.39724 567.48539 -94.86319
35 1 -959.73288097 8.11921604 1.46991870 1.07003 1.72943 -3.26904
We can see that, unlike the excited states, the diabatic states are highly overlapping (In NOSI Overlap Matrix, \(S_{01} = 0.76098229\)). In NOSI Coefficients Matrix, the column vectors are the adiabatic states, indicating that the reactant and product diabatic states are mixed in a 1:1 ratio in both the ground and excited states.
The adiabatic state energies are shown here (A standard DFT calculation is also given in adiab.inp):
NOSI Adiabatic State 0 |
NOSI Adiabatic State 1 |
DFT Adiabatic |
-960.03127186 Hartree |
-959.73288097 Hartree |
-960.05738745 Hartree |